Matematika

Pertanyaan

Selesaikan dengan substitusi trigonometri : ∫ ( (x^2) / √(9 - x^2 ) ) dx= ....
Mohon bantuannya mastah. Terima kasih

1 Jawaban

  • Misal, x = 3sin t
    sin t = x/3
    t = arcsin(x/3)

    x² = (3sin t)² = 9sin²t

    dx = 3 cos t dt

    ∫(x²)/√(9 - x²) dx = ∫(x²)/√(9 - 9sin²t) dx
    = ∫(x²)/√(9(1 - sin²t)) dx
    = ∫(x²)/√(9cos²t) dx
    = ∫(x²)/3cost dx
    = ∫9sin²t/3cost * (3 cost dt)
    = ∫9sin²t dt
    = ∫9(1 - cos 2t)/2 dt
    = (9/2)∫(1 - cos2t) dt
    = (9/2)(t - (1/2)sin2t) + C
    = (9/2)t - (9/4)sin2t + C

    sin2t = 2.sint.cost
    sin t = x/3
    cost = √(3² - x²)/3
    2.sint.cost = 2.(x/3)(√(3² - x²)/3
    = (2x√(3² - x²))/9

    (9/2)t - (9/4)sin2t + C = (9/2)arcsin(x/3) - (9/4)(2x√(3² - x²))/9 + C
    = (9/2)arcsin(x/3) - (x/2)√(9 - x²) + C

Pertanyaan Lainnya